

Anticipate & Act: Integrating LLMs and Classical Planning for Efficient Task Execution in Household Environments

ICRA2024 Уоконама | Јаран Raghav Arora¹*, Shivam Singh¹*, Karthik Swaminathan¹, Ahana Datta¹, Snehasis Banerjee^{1,2}, Brojeshwar Bhowmick², Krishna Murthy Jatavallabhula³, Mohan Sridharan⁴, Madhava Krishna¹

Website: <u>raraghavarora.github.io/ahsoka/</u> Contact: RAraghavaurora@gmail.com

¹Robotics Research Center, IIIT Hyderabad, India
 ²TCS Research, Tata Consultancy Services, India
 ³CSAIL, Massachusetts Institute of Technology, USA
 ⁴IPAB, University of Edinburgh, UK

- Assistive agents performing household tasks often compute and execute actions that accomplish one task at a time.
- Efficiency can be improved by <u>anticipating upcoming tasks</u> and computing an action sequence that jointly achieves these tasks.
- > We use:
 - world knowledge of LLMs for <u>high-level task</u> anticipation

Framework

- classical planning system to compute a sequence of finer granularity actions
- realistic scenarios in the VirtualHome environment for task execution and grounding.

Routine: $\mathcal{R} = \{\tau_1, \tau_2, ..., \tau_n\}$ $\forall \tau_j \in \mathcal{T} \text{ (known tasks)}$ LLM objective: predicting tasks τ_i for a routine \mathcal{R}

Each task τ_j requires a sequence $\{a_1^j, a_2^j, ..., a_k^j\}$ to be executed Every action a_k^j has a cost c_k^j Plan : $\pi = (a_1, ..., a_K)$ Planner objective : $\pi^* = (argmin)_{\pi^j} \mathcal{C}(\pi^j)$, where $\mathcal{C}(\pi^j) = \sum_{k=0}^K c_k^j$

Cost c_k^J represents the <u>time taken by the agent for execution</u>.

Results						
LLMs	Without context			With Context		
	Miss Ratio (Miss.) ↓	Partial Ordering Count (POC) ↑	$ \begin{array}{c c} KRCC \\ \uparrow \end{array} $	Miss Ratio (Miss.) ↓	Partial Ordering Count (POC) ↑	$ \begin{array}{c c} KRCC \\ \uparrow \end{array} $
PaLM	0.361	0.974	0.993	0.034	0.994	0.996
GPT-3.5-turbo	0.282	0.676	0.906	0.0698	0.806	0.976
GPT-4	0.037	0.960	0.995	0.0006	1.0	1.0

 $KRCC = \frac{n_c - n_d}{\sqrt{(n_0 - n_1)(n_0 - n_2)}}$

Performance of LLMs for Task Anticipation. Results over 500 experiments with \approx 20 tasks per experiment.

Mean execution cost ratio and plan length ratio WRT
Myopic Agent

Qualitative evaluation in VirtualHome simulation (Pickup of multiple items for anticipated tasks)

Discussion

We describe a framework: Anticipate&Act, for task anticipation and action execution by an agent in complex household environments. We use Planning Domain Definition Language (PDDL) as the action language to create a household domain and use the <u>Fast Downward</u> solver to compute plans for any goal state.

We present a **31% reduction** in execution time and a **12% reduction** in plan length compared to a system that does not anticipate upcoming tasks

References

- 1. Dhakal, R., Talukder, M. R. H., & Stein, G. J. (2023). Anticipatory Planning: Improving Long-Lived Planning by Estimating Expected Cost of Future Tasks. *IEEE International Conference on Robotics and Automation*, 11538–11545. London, UK.
- Valmeekam, K., Marquez, M., Olmo, A., Sreedharan, S., & Kambhampati, S. (2023). PlanBench: An Extensible Benchmark for Evaluating Large Language Models on Planning and Reasoning about Change. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, & S. Levine (Eds.), Advances in Neural Information Processing Systems (Vol. 36, pp. 38975–38987).
- 3. Silver, T., Dan, S., Srinivas, K., Tenenbaum, J. B., Kaelbling, L. P., & Katz, M. (2023). Generalized Planning in PDDL Domains with Pretrained Large Language Models. arXiv [Cs.AI]. Retrieved from http://arxiv.org/abs/2305.11014
- 4. Ghallab, M., Knoblock, C., Wilkins, D., Barrett, A., Christianson, D., Friedman, M., ... Weld, D. (08 1998). PDDL The Planning Domain Definition Language.