Introduction

- \triangleright Assistive agents performing household tasks often compute and execute actions that accomplish one task at a time.
- \triangleright Efficiency can be improved by anticipating upcoming tasks and computing an action sequence that jointly achieves these tasks.
- We use:
	- world knowledge of LLMs for high-level task anticipation

We describe a framework: **Anticipate&Act**, for task anticipation and action execution by an agent in complex household environments. We use Planning Domain Definition Language (PDDL) as the action language to create a household domain and use the Fast Downward solver to compute plans for any goal state.

- classical planning system to compute a sequence of finer granularity actions
- realistic scenarios in the *VirtualHome* environment for task execution and grounding.

Routine: $\mathcal{R} = {\tau_1, \tau_2, ..., \tau_n}$ $\forall \tau_j \in \mathcal{T}$ (known tasks) LLM objective: predicting tasks τ_i for a routine $\mathcal R$

Each task τ_j requires a sequence $\{a'_1\}$ j , a_2' j , \dots , a_k^J j } to be executed Every action a_k^J j has a cost c_k^J j Plan : $\pi = (a_1, ..., a_k)$ Planner objective : $\pi^* = (argmin_{\pi} \mathcal{C}(\pi^j))$, where $\mathcal{C}(\pi^j) = \sum_{k=0}^K c_k^j$ j

Cost c_k^J j represents the time taken by the agent for execution.

 $KRCC =$ $n_c - n_d$ $n_0 - n_1$) $(n_0 - n_2)$

Performance of LLMs for Task Anticipation. Results over 500 experiments with ≈ 20 tasks per experiment.

Discussion

We present a **31% reduction** in execution time and a **12% reduction** in plan length compared to a system that does not anticipate upcoming tasks

Anticipate & Act: **Integrating LLMs and Classical Planning for Efficient Task Execution in Household Environments**

ICRA2024

Raghav Arora^{1*}, Shivam Singh^{1*}, Karthik Swaminathan¹, Ahana Datta¹, Snehasis Banerjee^{1,2}, Brojeshwar Bhowmick², Krishna Murthy Jatavallabhula³, Mohan Sridharan⁴, Madhava Krishna¹

Framework

¹Robotics Research Center, IIIT Hyderabad, India ²TCS Research, Tata Consultancy Services, India ³CSAIL, Massachusetts Institute of Technology, USA 4 IPAB, University of Edinburgh, UK

Mean execution cost ratio and plan length ratio WRT Myopic Agent

References

- 1. Dhakal, R., Talukder, M. R. H., & Stein, G. J. (2023). Anticipatory Planning: Improving Long-Lived Planning by Estimating Expected Cost of Future Tasks. *IEEE International Conference on Robotics and Automation*, 11538–11545. London, UK.
- 2. Valmeekam, K., Marquez, M., Olmo, A., Sreedharan, S., & Kambhampati, S. (2023). PlanBench: An Extensible Benchmark for Evaluating Large Language Models on Planning and Reasoning about Change. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, & S. Levine (Eds.), *Advances in Neural Information Processing Systems* (Vol. 36, pp. 38975–38987).
- 3. Silver, T., Dan, S., Srinivas, K., Tenenbaum, J. B., Kaelbling, L. P., & Katz, M. (2023). Generalized Planning in PDDL Domains with Pretrained Large Language Models. *arXiv [Cs.AI]*. Retrieved from<http://arxiv.org/abs/2305.11014>
- 4. Ghallab, M., Knoblock, C., Wilkins, D., Barrett, A., Christianson, D., Friedman, M., … Weld, D. (08 1998). *PDDL - The Planning Domain Definition Language*.

Qualitative evaluation in VirtualHome simulation (Pickup of multiple items for anticipated tasks)

Website: raraghavarora.github.io/ahsoka/ Contact: RAraghavaurora@gmail.com

