
Deep learning for quantum chemistry using
density functional tight-binding method

Masters Thesis

Submitted in fulfillment of the requirements of

BITS F421T Thesis

By

Raghav Arora

ID No. 2017B2A31016P

Under the supervision of:

Dr. Alexandre Tkatchenko

&

Dr. Ram Kinkar Roy

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE PILANI, PILANI CAMPUS

November 2023

http://www.bits-pilani.ac.in/


Declaration of Authorship

I, Raghav Arora, declare that this Masters Thesis titled, ‘Deep learning for quantum chemistry

using density functional tight-binding method’ and the work presented in it are my own. I

confirm that:

■ This work was done wholly or mainly while in candidature for a research degree at this

University.

■ Where any part of this thesis has previously been submitted for a degree or any other

qualification at this University or any other institution, this has been clearly stated.

■ Where I have consulted the published work of others, this is always clearly attributed.

■ Where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work.

■ I have acknowledged all main sources of help.

■ Where the thesis is based on work done by myself jointly with others, I have made clear

exactly what was done by others and what I have contributed myself.

Signed: RAGHAV ARORA

Date:26/12/2021

i



BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE PILANI, PILANI CAMPUS

Abstract

Masters of Science (Hons.) Chemistry

Deep learning for quantum chemistry using density functional tight-binding method

by Raghav Arora

Machine Learning (ML) is an efficient tool capable of providing accurate prediction of quantum

mechanical properties without the computational overheads of high-level electronic structure

methods. This has led to numerous investigations, which have accelerated the exploration of

the chemical compound space for organic molecules and materials of interest. However, for

developing a ML model to predict physicochemical properties, we need a way to mathematically

represent the molecules and integrate it to a ML methodology. For this, several geometric

descriptors have been developed in the literature. Although these descriptors are able to capture

the geometric structure of a molecule, they have their own drawbacks, especially in the context

of predicting intensive properties and when dealing with non-equilibrium molecular structures.

In this regard, the present work aims to develop novel geometric and/or electronic descriptors to

accurately predict the physicochemical properties of highly distorted and equilibrium molecular

structures from the QM7-X dataset. These electronic descriptors will be generated using semi-

empirical quantum-chemical method such as Density Functional Tight Binding (DFTB). Diverse

neural network architectures will be also considered to test the new molecular representations

for the prediction of PBE0 atomization energy and HOMO-LUMO gap of these molecules. Our

results show that for intensive properties like HOMO-LUMO gap, the electronic descriptors are

able to provide better prediction results than geometric descriptors. Whereas, for extensive

properties like atomization energy, the combination of geometric with electronic descriptors can

efficiently represent the molecule and, then, generate more efficient ML models. We expect that

our findings open up the route to a low-cost search for accurate prediction of physicochemical

properties of equilibrium as well as non-equilibrium molecular structures, which is relevant for a

better understanding of chemical processes such as chemical reactivity and molecular design.

http://www.bits-pilani.ac.in/


Acknowledgements

A special thank you for the invaluable guidance and support provided by my Master Thesis

supervisors Prof Alexandre Tkatchenko from the University of Luxembourg and Prof. Ram

Kinkar Roy from BITS Pilani. I would also like to express my thanks to Dr. Leonardo Medrano

Sandonas from the Theoretical Chemical Physics Research Group for his guidance and inspiration

throughout the project.

I acknowledge the Center for Information Services and High Performance Computing (ZIH) from

Techincal Universität Dresden, for the computational resources provided for this thesis.

A thank you to Yolande Edjogo for the logistical support, and to the whole TCP group for their

welcoming attitude. I would also like to thank my family, whom without this would have not

been possible. I also appreciate all the support I received from my friends. Lastly, I would like

to thank the BITS that provided an opportunity to conduct this thesis.

iii



Contents

Declaration of Authorship i

Abstract ii

Acknowledgements iii

Contents iv

List of Figures vi

List of Tables vii

Abbreviations viii

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Fundamental Concepts 4

2.1 Theoretical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Density Functional Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Density Functional Tight Binding . . . . . . . . . . . . . . . . . . . . . . 6

2.1.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Generation Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Geometric Representations . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.2 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.3 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 SchNetPack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Results and Discussions 24

3.1 Molecular Property Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Neural Networks Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

iv



Contents v

3.2.1 Neural Network Architectures . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.2 Comparison of the models . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.2.1 SchNet Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Feature Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Summary and Outlook 38

4.1 Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Perspective and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Bibliography 41



List of Figures

1.1 CCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 DFTB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Schematic Representation of the QM7X dataset . . . . . . . . . . . . . . . . . . . 9

2.3 Distribution of Atomization Energy, and HOMO-LUMO Gap . . . . . . . . . . . 10

2.4 HOMO LUMO Gap for butadiene molecule . . . . . . . . . . . . . . . . . . . . . 11

2.5 Distribution of Electronic Descriptors . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6 CM and BOB representation of methanol . . . . . . . . . . . . . . . . . . . . . . 13

2.7 Representation of a multi-layer neural network . . . . . . . . . . . . . . . . . . . 16

2.8 Comparison for different Activation functions . . . . . . . . . . . . . . . . . . . . 17

2.9 Importance of Learning Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.10 k-fold Cross Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.11 Example of the Convolution operation . . . . . . . . . . . . . . . . . . . . . . . . 20

2.12 Example of Max Pooling operation . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.13 Example of the CNN architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.14 SchNet Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.15 SchNet Results for total energy prediction . . . . . . . . . . . . . . . . . . . . . . 23

3.1 EAT and EGAP for equilibrium and distorted conformation . . . . . . . . . . . . 25

3.2 Architecture 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Architecture 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Convolutional Neural Network Architectures using the electronic and the geometric
descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5 Error distribution of Sequential Networks . . . . . . . . . . . . . . . . . . . . . . 30

3.6 Comparison of error for different training set sizes . . . . . . . . . . . . . . . . . 31

3.7 Error distribution of Sequential Networks for predicting HOMO-LUMO gap . . . 31

3.8 Learning curve for training with only DFTB properties . . . . . . . . . . . . . . . 32

3.9 Learning curve for Sequential Networks using BOB . . . . . . . . . . . . . . . . . 32

3.10 Learning curve for Sequential Networks using BOB . . . . . . . . . . . . . . . . . 32

3.11 Comparison with the results of KRR . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.12 Comparison of various geometric descriptors . . . . . . . . . . . . . . . . . . . . . 34

3.13 SchNet Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.14 Heatmap for property correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

vi



List of Tables

2.1 List of the physicochemical properties used as inputs for property prediction. . . 12

3.1 Mean Absolute Error for prediction of Atomization energy using the different
Neural Network approaches compared to state-of-the-art model of SchNet and
Kernel Ridge Regression methods for strongly distorted molecules. . . . . . . . . 34

3.2 Feature Scores given to different electronic properties based on the f-value classifier. 37

vii



Abbreviations

MAE Mean Absolute Error

MSE Mean Square Error

CM Coulomb Matrix

BOB Bag Of Bonds

SLATM Spectrum of London and Axillrod Teller Muto potential

CCS Chemical Compound Space

HOMO Higher Occupied Molecular Orbital

LUMO Lowest Uoccupied Molecular Orbital

ML Machine Learning

NN Neural Network

CNN Convolutional Neural Network

KRR Kernel Ridge Regression

QML Quantum Machine Learning

viii



Chapter 1

Introduction

1.1 Background

An important aspect of chemical and material science research relies on the discovery and

characterisation of novel compounds that have the optimal properties for a given purpose.

The advances in this field have been accelerated significantly by the development of diverse

quantum-mechanical (QM) methods. The combination of these methods with machine learning

(ML) techniques has been widely used to gain insights into the understanding of complex

structure-property and property-property relationships of organic and inorganic materials [1]

[2]. ML used in the context of quantum mechanics is always referred as “Quantum Machine

Learning”, or QML [3]. Thus, applications QML in the field of chemical and material sciences

include: (i) computational design and discovery of molecules [3–5], (ii) development of efficient

force fields for molecular dynamics simulations [6–8], (iii) generation of extensive datasets [9–11],

(iv) molecular property prediction [2, 12, 13].

Looking at some Chemistry Journals, categorized based on technical divisions of the American

Chemical Society [1] that contain ML keywords, it was found that there were total 5,833 such

publications published in the year 2000, while a total of 26,836 published in 2010, and 1,16,750

publications in 2021 1. It is evident that the prevalence of ML is increasing over time. This

is due to the availability of extensive QM datasets, as well as the recent developments in the

computer hardware, such as parallel processing architectures in GPUs (Graphical Processing

Units). These hardware developments allow us to handle large datasets and train deep learning

models which are very computational expensive.

ML-based approaches mainly use well-established statistical algorithms, however, the performance

of the ML models developed with these methods strongly depend on the quality of the training

1The script for this calculation can be found at https://github.com/keithgroup/scopus_searching_ML_in_
chem_literature

1

https://github.com/keithgroup/scopus_searching_ML_in_chem_literature
https://github.com/keithgroup/scopus_searching_ML_in_chem_literature


Chapter 1. Introduction 2

data. Hence, one of the most important factors for the success of ML models for the prediction

of QM properties of molecules is the availability of QM datasets. Due to the expensive nature of

highly-accurate QM calculations, there are only a few number of QM datasets which match the

requirements for accurate molecular property predictions, and some of them are quite recent.

To mention a group of notable datasets, we have: QM7 [14, 15], QM8 [16, 17], QM9 [17, 18],

ANI-1 [10] and QM7-X [11]. All datasets consist of small organic molecules ranging in size

from QM7 with ≈7k equilibrium molecular structures formed of up to 7 non-hydrogen atoms

(C, N, O, S, Cl) to the QM9 with ≈134k equilibrium molecular structures formed of up to 9

non-hydrogen atoms (C, N, O, F). Besides dataset size, another key difference is the presence of

non-equilibrium molecular structures, only included in ANI-1 (≈20 million conformations) and

QM7-X (≈4.2 million conformations).

A challenge of ML for property prediction is the mathematical representation of a molecule,

known as molecular descriptor [19] [20] The numerical values of these descriptors are used to

quantitatively describe the physical and chemical information of each molecule. The main idea

in the definition of a descriptor is to include the maximum information about the molecules

while maintaining the physical invariances, e.g. rotational and translational invariances. The

more information about the molecules is provided as input to the model, the better the model

would perform. Diverse molecular descriptors are currently available to encode the geometric

structures of molecules. For instance, SMILES (Simplified Molecular-Input Line-Entry System)

[21] is a simple chemical notation representing a molecule in the form of a string of atom types

and the bonds between them. To incorporate three-dimensional information about molecules,

more complex and physically-or chemically-inspired geometric descriptors were also defined.

A descriptor based on the Coulomb interaction between atomic charges was thus defined and

named as Coulomb Matrix (CM) [14]. This descriptor was initially tested for the prediction of

the atomization energy of small molecules in QM7 dataset. Bag-of-Bonds (BoB) representation

was posteriorly used and it showed a better performance than CM representation [22]. Similar

to the bag-of-words representation used for natural language processing, BoB representation

uses the interatomic distances in a molecule. A bag represents a particular bond type, and the

final representation is a vector formed by concatenating all bag of bonds in a specific order.

Unlike CM, BoB does not distinguish between homometric molecules (molecules with different

geometries but equal set of pairwise distances between nuclei) [22]. This representation includes

more details about the interactions than CM, and is hence more computationally expensive. A

further complicated and computationally expensive representation is the Spectrum of London

and Axilrod-Teller-Muto (ATM) potential, or also known as SLATM representation [23]. SLATM

was developed and initially tested on the QM7b and QM9 datasets.

Although these representations have worked well for various purposes, including property

prediction of molecules, they have their limitations. As all of these representations are based on



Chapter 1. Introduction 3

Figure 1.1: The route of the computational modelling of molecular systems for the generation
of QM datasets: using the chemical compound space shown in the left panel, computations and
simulations are performed at different levels of accuracy and computational cost (see middle
panel). Finally, we store the results in datasets, containing information about molecules such as

quantum-mechanical properties and molecular structure. Figure taken from [24]

the 3D structure of molecules, they work properly for the prediction of extensive QM properties.

However, the performance for intensive QM properties, like HOMO-LUMO gap and dipole

moment, is very low [25]. Moreover, some geometric representations such as SLATM present

high dimensionality, which makes them very computational expensive. In brief, the definition of

low-cost and effective QM descriptors to develop reliable ML models for the prediction of both

extensive and intensive physicochemical properties is still an open challenge in ML investigations.

1.2 Objectives

The goal of the present master thesis is to address the challenge described above by defining

new geometric and/or electronic descriptors for accurate prediction of diverse physicochemical

properties of small drug-like molecules. To do so, we will combine geometric descriptors such

as CM, BOB, and SLATM with electronic properties computed by using a well-established

semi-empirical method such as density functional tight-binding (DFTB) method [26]. These

descriptors will be integrated into neural networks (NN) architectures. Here, we will make use

of information about equilibrium and non-equilibrium molecular structures from the QM7-X

dataset [11]. Additionally, a feature reduction technique is used to identify the most relevant

DFTB electronic properties for property prediction.

The present work is organized as follows: in Chapter 2, a brief introduction to QM methods

along with the description of the generation procedure of QM7-X are given. An explanation

about neural networks is also provided in Chapter 2. The results obtained in this project are

presented and discussed in Chapter 3. Finally, the synopsis, final remarks, and outlook of the

master thesis can be found in Chapter 4.



Chapter 2

Fundamental Concepts

2.1 Theoretical Background

Quantum mechanics is based on a series of postulates formulated at the turn of the 20th century.

It is stated that any closed quantum-mechanical (QM) system is fully described by a wave

function, ψ. Any physically-acceptable wave function thereby has to be continuous, single-valued

and square-integrable (with the exception of continuum states). For a system of nuclei and

electrons, a relation between the wave function and the system is given by Schrödinger equation

(SE):

iℏ
∂

∂t
Ψ(r, t) = ĤΨ(r, t)

Ĥ is the Hamiltonian operator, and when applied to the wave function ψ, the eigenvalue of this

operator gives us the total energy of the system. After separating the above differential equation

into a time-dependent phase factor oscillating in the complex plane and a stationary part of the

wave function, one arrives at the time-independent SE,

− ℏ2

2m

d2ψ

dx2
+ V ψ = Eψ

According to the Born-Oppenheimer approximation, this equation can be further factorized into

nuclear and electronic parts. So, for an N-electron system, the many-electron time-independent

Schrödinger equation can not be separated into simpler single-particle equations because of the

electron-electron interaction Û . Hence, for the three spatial coordinates, the equation is 3N

dimensional.

4



Chapter 2. Fundamental Concepts 5

2.1.1 Density Functional Theory

The idea behind Density Functional Theory [27, 28] is to express the total energy as a functional

of ρ(r), the electronic charge density. This reduces the dimensionality of the problem from 3N, to

simply three coming from the three spatial coordinates. According to the second Hohenberg–Kohn

theorem [27], the electron density that minimizes the energy of the overall functional is the

true electron density corresponding to the full solution of the Schrödinger equation. Thus, the

ground state wave function, ψ0 is a unique functional of the ground state electron density ρ0, i.e,

ψ0 = ψ[ρ0]. Consequently, the ground state energy is also a functional of ρ0:

E0 = E[ρ0] = ⟨ψ[ρ0]|T̂ + V̂ + Û |ψ[ρ0]⟩ . (2.1)

Here, T̂ is the kinetic energy operator, V̂ is the potential energy from the external field due to

positively charged nuclei, and Û is the electron-electron interaction energy. Unlike T̂ and Û , V̂

depends on the system under study and can be expressed as: V [ρ] =
∫
V (r)ρ(r)d3r. T̂ and Û

are called universal operators, because they are the same for any N-electron system.

The ground state energy is then obtained by minimizing the following functional with respect to

ρ(r):

E[ρ] = T [ρ] + U [ρ] +

∫
V (r)ρ0(r)d

3r (2.2)

Although the dimensionality is reduced, this minimization is still a complex problem for many-

electron systems. To solve this, Kohn and Sham formulated a theory known as the Kohn-Sham

DFT (KS-DFT). Here, exchange and electron correlation effects are collected into the exchange-

correlation (xc) functional. The exact mathematical form of the Exc is still unknown and most

applications rely on approximated methods, which use different models of the density functional.

E[ρ(r)] = Ts + Eext + EH + Exc + EII (2.3)

Here, Ts is the non-interacting kinetic energy, EH is the hartree energy, and Exc is the exchange-

correlation energy. Expanding the terms, we get:

E[ρ(r)] =
∑
a

fa ⟨ψa|−1/2∇2 + Vext + 1/2

∫
ρ(r’)

|r′ − r|
d3r′|ψa⟩+ Exc[ρ] + EII (2.4)

Here, fa ∈ {0, 2}, is the occupation of a single-particle state ψa with energy ϵa. The Hartree

potential used in the equation is given by:



Chapter 2. Fundamental Concepts 6

Figure 2.1: The position of density functional tight-binding (DFTB) method in time-size
graph is shown. Figure taken from [29]

VH(r) =

∫
ρ(r’)

|r− r’|
d3r’ (2.5)

2.1.2 Density Functional Tight Binding

The Density Functional Tight-Binding (DFTB) [26] is a semi-empirical method based on the

perturbation expansion of the Kohn-Sham energy functional, in a minimal basis expansion of

atomic orbitals. In the equation for the KS-DFT, the ground state electron density is expressed

as a combination of a reference electron density (ρ0(r)) and some fluctuations (δρ(r)) [30].

ρ(r) = ρ0(r) + δρ(r) (2.6)

This relation is substituted in the KS-DFT equation, and perturbation expansion is done in the

form of Taylor Series about the reference electron density. The non-interacting reference electron

density ρ0 is taken as the superposition of the effective atomic densities ρA(r): ρ0(r) =
∑

j ρ
j
A(r).

On expanding the equation up to the 3rd order, we get the following expression for the total

energy:

EDFTB3[ρ0 + δρ] = E0[ρ0] + E1[ρ0, δρ] + E2[ρ0, (δρ)
2] + E3[ρ0, (δρ)

3] (2.7)



Chapter 2. Fundamental Concepts 7

Etot =
∑
a

fa ⟨ψa|−1/2∇2 + Vext + VH(ρ′) + δExc[ρ]

δρ
|ψa⟩

+
1

2

∫∫
R6

(
1

||r − r′||
+
δ2Exc[ρ]

δρ

∣∣∣∣
ρ0

)
δρδρ′d(r)dr’

+
1

6

∫∫∫
R9

δ3Exc[ρ]

δρδρ′δρ′′

∣∣∣∣
ρ0

δρδρ′δρ′′d(r)dr’dr”

+
∑
A<B

ZAZB

∥RA −RB∥
− 1

2

∫
R3

VH [ρ0′]ρ0d(r) + Exc[ρ0]−
∫
R3

δExc[ρ]

δρ

∣∣∣∣
ρ0

ρ0dr

(2.8)

As previously mentioned, fa denotes the occupation number of the single particle state ψa, ρ

denotes ρ(r), ρ′ denotes ρ((r′), and so on. ZA and ZB represent the atomic numbers of the

atoms, and δ/δρ denotes the functional derivative with respect to ρ. The first line is the band

structure term, which equals the DFT energy of the starting density, ρ0. The 2nd term is the 2nd

order DFTB term, and denotes the coulomb energy. The third line the third-order contribution

and the last line is collectively referred to as the repulsive energy [30]. For the Band-structure

term, the electrons are considered tightly-bound to their respective atoms, and the effects arising

from the relaxation of the charge on the atoms is provided by the 2nd and the 3rd order terms.

For the 0th and 1st order approximations, the orbitals are written as linear combination of

atomic orbitals (LCAO) of valence-only minimal basis set ϕµ:

ψi =
∑
µ

cµiϕµ (2.9)

The 0th order term in equation 2.7, E0[ρ0] is approximated as a sum of pair potentials, which

are either determined by comparison with DFT calculations or fitted to empirical data. E0[ρ0] ≈
Erep = 1

2

∑
AB V

rep
AB For the approximation of 2nd and 3rd order terms, E2 and E3, the density

perturbations, δρ are written as superposition of atomic contributions, taken to be exponentially

decaying spherically symmetric charge densities,

δρ(r) =
∑
A

δρA(r−RA) ≈
1√
4π

∑
A

(
τ3A
8π
e−τA|r−RA|

)
∆qA (2.10)

∆qA is the charge fluctuation from the Mulliken charge {qA}. Neglecting the XC effects for the

moment, E2 leads to an analytical function γAB,

E2(τA, τB, RAB) =
1

2

∑
AB(̸=A)

γAB(τA, τB, RAB)∆qA∆qB (2.11)

The energy depends on the mulliken charges {qA}, which in turn depend on the molecular orbital

coefficients cµi. Hence, the equations need to be solved self consistently. At large distances, γAB



Chapter 2. Fundamental Concepts 8

approaches 1/RAB, while at short distances, it represents electron–electron interactions within

one atom. The third order terms describe the change of the chemical hardness of an atom and

are computed from DFT. A function ΓAB results as the derivative of the γ-function with respect

to charge, and the DFTB3 total energy is then given by:

EDFTB3 =
∑
a

fa ⟨ψA|Ĥ0|ψA⟩+
1

2

∑
A,B

∆qa∆qBγAB +
1

3
∆q2A∆qBΓAB +

1

2

∑
AB

V rep
AB (2.12)

For practical purposes, multiple computational modeling softwares have been implemented

which contain DFTB method. For example, ADF (Amsterdam density-functional software) [31],

Gaussian [32], DeMon[33], which were originally implemented as standard DFT codes. However,

the original DFTB implementations can be found in the DFTB+ code [34], which has been used

to obtain the electronic structure information of molecules in this thesis.

2.1.3 Limitations

Although DFTB is able to achieve a remarkable speed-up and favorable scaling with system size

in comparison to full DFT, it has its own limitations. Owing to the approximate nature, there is

a trade-off between computational efficiency and accuracy. One major source of inaccuracy and

reduced transferability is the minimal basis set of confined atomic wave functions chosen in DFTB.

As a result of the minimal basis, polarization effects, which require more diffuse, delocalized basis

function, are often poorly described. This is particularly affecting the description of hydrogen

bonds, the hybridization states of nitrogen or phosphorous, or conduction bands in solids [34, 35].

Moreover, as DFTB is based on semi-local density functionals, DFTB inherits the shortcomings

known for these functionals. The most relevant deficiency is the lack of (dynamic) long-range

electron correlation that DFTB inherits from semi-local DFT. Despite having these limitations,

DFTB is a good reference method to describe the main electronic characteristic of organic and

inorganic materials. Indeed, In the present work, we will use the output data obtained from

DFTB calculations to define the electronic descriptors of small organic molecules.

2.2 Datasets

As discussed earlier, the quality of the dataset used to train any ML model directly affects the

performance in molecular property prediction. In this research work, we have used three subsets

of the QM7-X dataset [11], which is a recent dataset containing 42 physicochemical (global

and local) properties for almost 4.2 million equilibrium and non-equilibrium structures of small

drug-like molecules.



Chapter 2. Fundamental Concepts 9

Figure 2.2: Generation procedure of the QM7X dataset. Figure taken from [11]

2.2.1 Generation Procedure

Figure 2.2 shows a schematic representation of the generation procedure of QM7-X dataset.

QM7-X was built using a set of around 7k molecules with up to 7 heavy atoms (C,N,O,S,Cl)

along with Hydrogen in the GDB13 dataset [Blum09]. As GDB-13 only contained the chemical

connectivity information (encoded as SMILES strings [21]), all the structural/constitutional

isomers and stereoisomers were generated for each molecular formula by generating canonical

SMILES strings for each possible molecular structure. 3D structures were obtained using

MMFF94 force field via the gen3d option in Open Babel. For each of these structures, a set of

sufficiently different (meta-)stable conformational isomers was generated. Conformational isomer

search was done using the Confab tool, and only those conformers were retained that were within

50 kcal/mol of the most stable structure and differed by a root-mean-square deviation (RMSD)

of 0.5 Å. This produced the set of ≈42k equilibrium molecules.

All the structures were optimized using DFTB3 (third-order self-consistent charge density

functional tight-binding) method supplemented with a treatment of Many-Body Dispersion

(MBD) interactions. For each of the (meta-)equilibrium structure generated, around 100

non-equilibrium structures were generated. This was achieved through a distortion of each

equilibrium geometry along a linear combination of their vibrational normal modes computed at

the DFTB3+MBD level. This subset contains close to 4 million unique non-equilibrium structures.

For these ≈ 4.2 million structures, a set of 42 physicochemical properties were computed using

DFT with PBE0 hybrid functional (tight basis set) and MBD dispersion interaction. We will



Chapter 2. Fundamental Concepts 10

(a) Atomization Energy distribution (b) HOMO-LUMO gap distribution

Figure 2.3: The distribution of Atomization Energy, and HOMO-LUMO gap in the 3 datasets
used. The y-axis shows the number of molecules in the respective dataset corresponding to a

particular interval of energies in the x-axis. The values for both the properties are in eV.

here use three subsets of the QM7-X dataset: the first subset contains ≈42k highly distorted

molecules, the second subset contains ≈42k equilibrium molecules, and the last one is a bigger

dataset of ≈ 200k slightly distorted molecules.

2.2.2 Properties

In this thesis, we have used levels with two different levels of theory. The first set of properties

is the target properties, which are the properties we attempt to predict, and the second set is of

the properties used for calculating the electronic descriptors.

Target Properties: Our work considers two target properties that we attempt at predicting.

This includes the atomization energy EAT and the HOMO-LUMO gap Egap. These properties

were computed with PBE0+MBD level of theory, and are highly accurate. For the three subsets

of the QM7-X dataset used, the distribution of atomization energy and HOMO-LUMO gap are

shown in Figure 2.3.

Atomization Energy is used frequently as the first property checked for a prospective ML

model predicting physicochemical properties. As it is relatively simple to measure atomization

energy, there is an existence of experimental data on the use of different descriptors to predict

Atomization Energy. EAT is the measure of energy needed to break down a molecule into its

constituent atoms. Hence, we can see in the Figure 2.3(A) that the atomization energy is higher

for the equilibrium molecules, than the distorted molecules.

The second property predicted is the HOMO-LUMO gap. Egap is an intensive property, as it

depends on both the composition and configuration of the molecule, and not on the system

size. Egap is a measure of the difference in energies of the Highest Occupied Molecular Orbital



Chapter 2. Fundamental Concepts 11

Figure 2.4: Molecular Orbital Diagram for 1,3-butadiene. The highest energy orbital of the
conduction band is called HOMO, and the lowest energy orbital of the valence band is LUMO.

The difference in energy of LUMO and HOMO is denoted by ∆o, or Egap

(HOMO), and the Lowest Unoccupied Molecular Orbital (LUMO). The HOMO and LUMO

are collectively called as frontier orbitals. The highest occupied molecular orbital is obtained

through constructive interference of the atomic orbitals (AO). As the name suggests, this is

the last orbital that is occupied by an electron in a molecule’s ground state. The LUMO, on

the other hand is the Lowest Unoccupied Molecular Orbital, which is formed by destructive

interference of atomic orbitals. When any molecular excitation happens, electrons move from the

HOMO, to the LUMO. Hence the HOMO to LUMO energy gap is an important factor to know

about the atomic overlaps, and can be used to predict the strength and stability of molecules.

Electronic Descriptors: The second set of properties were used for computing the electronic

descriptors, and were computed using semi-empirical methods. Here, we have made use of

DFTB approximations for generating the electronic descriptors, using the DFTB+ [34] package,

and these properties have lower accuracy. A total of 11 physicochemical properties from the

dataset were used to define the electronic descriptors. The 11 properties used are: Fermi

Energy, Band Energy, Number of Electrons, 0th Energy, scc Energy, 3rd energy, repulsive energy,

many-body-dispersion energy, Dipole Moment, Eigen Values, Atomic Charges. More information

about these properties is given in the table 2.1, and a distribution of some of these properties in

the dataset of strongly distorted molecules is provided in the Figure 2.5



Chapter 2. Fundamental Concepts 12

Symbol Property Unit

Efermi Fermi Energy eV
Eband Band Energy eV
Nelec Number of Electrons
E0 0th order DFTB Energy eV
Escc 2nd order DFTB Energy eV
E3rd 3rd order DFTB Energy eV
EMBD Many Body Dispersion Energy eV
Erep Repulsive Energy eV
TBdip Tight Binding Dipole Moment Cm
TBeig Tight Binding Eigen values
TBchg Atomic Charges

Table 2.1: List of the physicochemical properties used as inputs for property prediction.

Figure 2.5: Distribution of some of the properties taken into consideration for generating the
electronic descriptors.

2.3 Machine Learning

Electronic descriptors of molecules will be defined using the information obtained from DFTB

outputs, as mentioned before. In this section, we explain the geometric descriptors that will be



Chapter 2. Fundamental Concepts 13

(a) 3d structure of
methanol molecule (b) Coulomb Matrix Representation of methanol

(c) BOB Representation of methanol
(d) Sorting of

Bags
(e) Concatena-

tion of bags

Figure 2.6: CM and BOB representation of methanol

considered in the present work to train ML model. Then, the concept of neural networks and

their related hyperparameters are briefly described.

2.3.1 Geometric Representations

In order to train a ML model, information about molecules needs to encoded in a mathematical

form to input to the model. The mathematical representation of the 3D structure of a molecule is

called geometric descriptor. We have here used three well-known geometric descriptors: Coulomb

Matrix (CM) [14], Bag-of-Bonds (BoB) [22], and SLATM [23].

Coulomb Matrix : The mathematical representation of methanol molecule in the form of

coulomb matrix is shown in the Figure 2.6. The elements in the coulomb matrix, Cij , are defined

using the atomic numbers of the atoms, Zi and Zj , and the interatomic distances Rij between

the atoms i and j.

CCoulomb
ij =

{
0.5Z2.4

i for i = j
ZiZj

Rij
for i ̸= j

(2.13)



Chapter 2. Fundamental Concepts 14

The mathematical formula for calculation of coulomb matrix is given in equation 2.13. The

non-diagonal elements of the coulomb matrix represent the coulombic repulsions of the atoms,

while the diagonal elements encode a polynomial fit of atomic energies to nuclear charge [14].

The resultant coulomb matrix is a square symmetric matrix, of size (N,N), where N is the number

of atoms in the molecule. It can be flattened into a 1D vector while removing the duplicate

entries, making the total size of the vector to be N2+N
2 . CM representation is invariant to

molecular translations and rotations.

Bag of Bonds: The Bag-of-Bonds representation is based on Coulomb Matrices, and uses the

principles of the bag-of-words representation used for natural language processing. Here, each

molecule is represented as a vector composed of bags, and a bag represents a particular bond

type, i.e., a pair of elements. For each combination, the interaction is computed by the formula

for coulomb matrix. All the off-diagonal CM entries are sorted and assigned to a ”bond” bag.

The bags are then concatenated and zero-padding is done to make the bags of the same size. This

representation is also invariant under molecular rotations and translations, and permutational

invariance is enforced by the sorting step. Compared to CM, BoB provides more information

about the molecule and has shown to provide better property prediction results, but at the same

time, it’s computationally more expensive. However, BoB still lacks spatial information about

the molecule, for example dihedral angles, which is a major difference between this and more

complex descriptors.

SLATM: Spectrum of London and Axilrod-Teller-Muto (ATM) potential, or the SLATM

representation [23] makes use of the charge density of the system, and is much more complex

than CM and BOB representations. It is invariant to translation, rotation, and permutation of

the system. CM, BOB and SLATM were compared in ref: [23] on the datasets QM7b and QM9

for prediction of total molecular potential energy using Kernel Ridge Regression methods, and

SLATM was seen to outperform CM and BOB by a big margin. SLATM is composed of two-

and three-body potentials, which are derived from the atomic coordinates and contain most of

the relevant information to predict molecular properties [36].

For the SLATM representation, we start by choosing the charge density distribution of the

system as an ensemble of electrons partitioned onto different atoms [23]. ρ(r) =
∑

i ρ
i(r), and

ρi(r) is approximated as:

ρi(r) = Zi

δ(r −Ri) +
1

2

∑
j ̸=i

Zjδ(r −Rj)g(r−Rj)





Chapter 2. Fundamental Concepts 15

Here, δ is set to the normalized Gaussian function, δ(x) = 1
σ
√
2π
e

−x2

2σ , and g(r) is chosen similar

to the london potential, g(R) = 1/R6.

The charge density contribution for the ith atom from the jth atom is same as the contribution

for the jth atom from the ith atom, hence a factor of 1/2 is added before the summation term to

remove the double counting.

The charge density so generated contains unnecessary degrees of freedom, as it is translation

and rotation dependent. Hence, ρi(r) is projected onto different internal degrees of freedom,

associated with well-known many-body terms.

For one-body term, the projection is simply the nuclear charge, Zi. Whereas, the two-body term

is
1

2

∑
j ̸=i

Zjδ(r −Rij)g(r)

The 3-body term is:
1

3

∑
j ̸=k ̸=i

ZjZkδ(θ − θijk)h(θ,Rij , Rik)

θ is the angle spanned by the vectors Rij and Rik. The 3-body contribution is )h(θ,Rij, Rik)

and is chosen to correspond to the Axilrod-Teller-Muto (ATM) vdW potential[37]:

h(θ,Rij , Rik) =
1 + cos θ cos θjki cos θkij

(RijRikRkj)3

The charge density ensemble representation is in essence the concatenation of the different

many-body potential spectra. The resultant representation is called as Spectrum of London and

ATM potential (SLATM) representation.

So, although SLATM provides more information about the molecule, it is difficult to use it

because of it’s high computational cost. So, there is a tradeoff between the computational cost

and the effiency of the geometric descriptor, and we need to find an appropriate middleground

to achieve high accuracy with lower resources.

2.3.2 Neural Networks

A Neural Network (NN) is a collection of artificial neurons, which collectively work as a function

to map a set of input features to the output. These artificial neural networks work in a manner

similar to the transport of information in the neurons of our body’s biological neural network. A

basic structure of a multilayer artificial neural network is given in the Figure 2.7. As visible in

the Figure 2.7, a set of input features {I1, I2, ..., In} are mapped to the outputs {O1, O2, ...,

Ow}, through certain hidden layers. The circles shown in the figure are the neurons, and each



Chapter 2. Fundamental Concepts 16

...

...
...

I1

I2

I3

In

H1

Hm

O1

Ow

Input
layer

Hidden
layer

Ouput
layer

Figure 2.7: This figure denotes a sequential multi-layered neural network. The circles denote
the neurons of a layer, and the lines denote connections between 2 neurons. This is a fully-
connected neural network, which means that each neuron of 2 adjacent layers are connected to

each other.

line connecting the neurons is assigned a weight and each neuron has an associated bias. The

output of jth neuron of the hidden layer will be given by:

Hj = f(
n∑

i=1

(wij · Ii) + bj) (2.14)

Here, wij is the weight associated with connection of the ith neuron of the input layer and the

jth neuron of the hidden layer. bj is the bias, or an offset associated with the jth neuron of the

hidden layer, and “f” is an activation function employed to remove the linearity from the model,

which will be discussed below.

We discuss a few components of a neural network as follows:

Dense Layers : Figure 2.7 shows a simple sequential NN architecture, also called as multi-

layered perceptron. A sequential NN is composed of layers of neurons, called as the Dense Layers.

The neurons of these layers are fully connected as discussed previously. These neural networks

work sequentially, layer-by-layer, transferring the information from the input layer to the hidden

layers, followed by the output layer. The layers are called dense, because the neurons of adjacent

layers are fully connected, and data propagation happens only in 1 direction. This different from

other architectures like convolutional layers, where the neurons are not fully connected, or the

recurrent networks, where data is propagated in multiple directions. Dense layered sequential

networks are the most basic types of neural networks, and are the most relevant to this project.

Activation Functions The function ‘f’ used in the Equation 2.14 is an activation function,

which is used to remove linearity from a neural network model. Typical activation functions

are tanh, relu or sigmoid. The presence of the activation function allows the neural networks to

handle non-linear data and decode complex patterns and relationships between the features. A



Chapter 2. Fundamental Concepts 17

Figure 2.8: Comparison for various common activation functions.

graphical representation of different activation functions is shown in the Figure 2.8. One can

here see that elu, or exponential linear unit, is based on relu and contains a parameter called α

which denotes the smoothness of the curve when the input is negative.

The tunable parameters like the choice of the activation function, number of neurons in each

layer and total number of layers are collectively called as hyperparameters.

Training neural networks Initially, random weights and biases are assigned to the network,

and these are then improved by using a trial-and-error approach called as backpropagation. This

step is referred to as training of the neural network. During this propagation and backpropagation

of information in the neural network, the model tries to change the weights and biases in a

manner that minimizes the error. To do this, a ”loss function” is defined based on some

statistical parameters. The change of weights and biases for minimizing the loss is governed by

the ”optimizer” method. A simplest example of an optimiser is the Gradient descent, which

changes the weights based on a ”learning-rate” and the slope of the loss function. If the number

of hidden layers are increased, the training method is referred to as ”deep-learning”. The model

tries to reach a minima of the loss function based on the slope of the loss function. While

changing the weights and biases in backpropagation, the gradient of the loss function is typically

multiplied by a learning rate which determines the size of the step to take. Figure 2.9 shows the

impact of learning rate on the training efficiency. A very small learning rate will take a long

time to converge, and will have high chances to converge to a local minima. A higher learning

rate, on the other hand, will be too chaotic and cause drastic updates which will not be able to

converge to a minima.



Chapter 2. Fundamental Concepts 18

Figure 2.9: Importance of an optimum learning rate. (Figure taken from [38]). J(θ) is the loss
function calculated for a given parameter θ. The minimization of loss is done via adjustment of

weights and biases by the optimiser method.

Typically the training procedure requires a large number of iterations (called as ”epochs” in

machine learning). Hence, the more the training data is available to the model, the more accurate

weights and biases would be, and the better the model would perform. Errors in the data are

usually called outliers, and these outliers cause problems in the training process. So, the quality

of data is important for the training of the model. Another drawback of neural networks is that

the curves for the loss function are usually not as smooth as given in Figure 2.9, and contain

multiple local minimas. The model might converge to a particular local minima rather than

the global minima, and since the dependence is on multiple parameters, the optimum training

depends on an experienced-choice of hyperparameters.

k-fold Cross Validation For efficient training of a neural network model, the input data is

split into training and testing sets, so the model can be trained on the training set, and the

efficiency of the model can be measured on the testing set. Another way to efficiently validate

your model is the cross-validation method. In k-fold cross validation method, the input data

is split into k equal parts, and (k-1) sets are used for training the model, and the last set is

used for testing the model. Then the entire process is repeated ‘k’ times, such that each subset

has been used at least once as the testing set. The testing error for each case is taken and the

final cross-validation error is reported to be the average of each error. An illustration of the

process is shown in the Figure 2.10. The number of folds ‘k’ are chosen with respect to the the

computational resources available, and also on the available data points.

Overfitting Another problem in the use of neural networks is “overfitting”, where the model

starts to memorize the training data and hence fails to perform well on the testing data. One of

the causes of overfitting is when there are large number of trainable parameters available to the

network. In this case, the model would be able to perform well on the training data because of

the ability to detect patterns, but it wouldn’t be able to learn the trend of the data, and hence



Chapter 2. Fundamental Concepts 19

Figure 2.10: Illustration of the k-fold cross validation method. Figure taken from Wikimedia
[39]

fail on the test set. Another cause of overfitting is when training is performed on smaller training

set for too long. Feeding the same data multiple times to the model will allow it to learn the

output, but with unseen data (test set), the model will fail. Overfitting can be prevented by

penalizing the network during the training process thereby increasing the training error, but

lowering down the testing error. This process enforces the network to not memorize the patterns

in the training data. It can be done via methods like dropout [40], regularization, etc.

2.3.3 Convolutional Neural Networks

Convolutional Neural Network, or CNN [41] is a deep-learning algorithm that makes use of a

specific layer known as the convolutional layer. The name of convolutional layers comes from

the use of a mathematical operation called convolution. Mathematically, convolution operation

works on two given functions as:

s(t) =

∫
x(a)w(t− a) dx

.

This operation can be denoted by an asterick (*) as: s(t) = (x ∗w)(t). For the case of the CNNs,

w(t) is the trainable kernel that will be “convolved” with the data in the neural network (x(t))

to produce output data which will propagate through the network. An example of 2-dimensional

convolutional operation is given in Figure 2.11.

Similar to the approach used for simple sequential neural networks, convolutional neural networks

also make use of neurons, and the network works by assigning weights and biases. The difference



Chapter 2. Fundamental Concepts 20

Figure 2.11: An example of 2D convolution operation. (Figure taken from [42]).

is, that for convolutional layers, instead of having a weight associated with each neural connection,

there is a kernel matrix that convolves with the inputs to the layer to produce the output, which is

propagated forwards. In traditional neural networks, the weights of any layer can be represented

as a matrix, and output of the layer can be calculated by taking the dot product of the input

matrix with the weights matrix. In CNNs, on the other hand, the output of the convolutional

layer is calculated by taking the convolution of the input matrix with the kernel filter. Since the

kernel matrix used in practice is usually smaller in size compared to the input matrix, CNNs are

called sparse-connected networks, because there is no direct connection between each neuron of

the layers. Accordingly, CNNs store fewer number of parameters for each convolutional layer,

reducing the computational cost, while improving the model’s statistical efficiency. The kernel

matrix used is smaller in size, so that it can detect small features of the input, (e.g., a particular

edge in the image of a huge building).

Owing to the nature of the convolution operation, the input matrix needs to be padded along

the borders so that the border values are not lost in the convolution operation. Usually, the

matrices are zero-padded, i.e., they are padded with 0s on the borders. Another hyperparameter

in CNNs is stride, which denotes the number of pixels of the input matrix that the kernel filter

will move on each iteration. By default, stride is taken as 1 in the convolution operation, which

is shown in the Figure 2.11, if the stride is taken as 2, the kernel matrix will move 2 pixels on

each iteration, both across the row, and down the column.

If the input vector is of size, ‘W’, the filter kernel is a vector of size ‘F’, the amount of zero

padding is ‘P’, and the stride is ‘S’, then the output vector of the convolutional layer will have

size, O = W−F+2P
S +1. This increases the size of the vector, and at the same time, convolutional



Chapter 2. Fundamental Concepts 21

Figure 2.12: An example of 2x2 max pooling operation.

Figure 2.13: A typical CNN architecture showing the convolutional layer, pooling layer

layers also increase the number of channels of the input, where each channel works on identifying

a different feature of the input data. Thus, the size of the data propagating through the network

increases, which increases the computational load. To tackle this problem, CNNs make use

of another type of layer called as the pooling layer, which helps in downsampling the data

efficiently. The Figure 2.13 shows examples of convolutional and pooling layers in a typical CNN

architecture. Here, the pooling layer is represented by ‘Max Pool’ denoting the Max Pooling

operation, which is shown in the figure 2.12

2.4 SchNetPack

SchNetPack [43] is an end-to-end deep-learning framework to develop NN model of atomistic

systems. It includes a complex NN architecture successfully used for the prediction of a range of

physicochemical properties of diverse molecular systems across the chemical space. Schnetpack

considers the implementation for the SchNet [44] NN architecture which follows the deep tensor

neural network (DTNN) framework [45] based on continuous-filter convolutions. As shown in

the Figure 2.14, any atomistic system with ‘n’ atoms is initially represented by the set of nuclear

charges and the position vectors for each atom. Through the layers of the SchNet architecture,

the atoms are described by a tuple of features X l = (xl
1, ...,x

l
n), where ‘l’ is the current layer.



Chapter 2. Fundamental Concepts 22

Figure 2.14: Illustration of the SchNet architecture (left). The right part shows the interaction
block.

These are initialized randomly and optimized during the training of the network. By definition,

these representations only include information about the atoms individually, discarding any

information about the environment. The Figure 2.14 shows ‘atom-wise’ layers which are dense

layers used for training and for each atom ‘i’, the output of layers is given as: xl+1
i =W lxl

i + bl.

As it is shown in right part of Figure 2.14, the interaction blocks of Schnet make use of ‘cfconv’

layers, which are the continuous filter convolutional layers. This is similar to the convolutional

layers explained above, but instead of having a particular kernel filter, schnet models the filters

continuously with a separate filter-generating neural network. These interaction blocks model

the pairwise interaction of a given atom with its environment via the cfconv layer. For a given

atom ‘i’ and layer ‘l’, the interaction of the atom with all the surrounding atoms is given by:

xl+1
i = (X l ∗W l)i =

natoms∑
j=1

xl
j ◦W l(rj − ri)

. Here, * represents the convolution operation and X l denotes the atomwise representations at

positions R. ◦ represents element-wise multiplication. The filter-generator is a fully connected

neural network which models the continuous filter W l used by the cfconv layer.

Schnet architecture has been widely used for different studies, e.g., the prediction of total energy

Uo of ≈131k small organic molecules with up to 9 heavy atoms considered in QM9 dataset. The

results are shown in the Figure 2.15. This figure shows the learning curves, i.e., the variation of

the mean absolute error (mae), in eV on the y-axis, as a function of the training set size (number

of molecules used for training), on the x-axis. ‘T’ represents the total number of interaction

blocks used to train the NN model. As we can see, after increasing the number of interaction

blocks, MAE for the model reduces and all the Schnet models shown in the figure performed

better than the best DTNN models.



Chapter 2. Fundamental Concepts 23

Figure 2.15: MAE of energy predictions by Schnet for different number of interactions compared
with the best performing DTNN model. Results from the paper [44]

Schnet has been shown to be useful for not only property predictions, but also the predictions of

potential energy surfaces and energy-conserving force fields. It follows rotational, translational

and permutational invariances, and is able to perform fast and accurate predictions. The

architecture is currently state-of-the-art. The results from the NN models generated using the

novel geometric/electronic descriptors in this thesis are compared with the obtained using SchNet

models.



Chapter 3

Results and Discussions

3.1 Molecular Property Space

As mentioned in the previous chapter, the goal of the present thesis is to define efficient

molecular representations by combining geometric and electronic descriptors, and compare the

representations by training efficient neural network (NN) models. The atomic coordinates and

(extensive/intensive) physicochemical properties of diverse organic molecules used for training

and testing the NN models were taken from subsets of the QM7-X dataset. The first subset

contains 41,537 strongly distorted (non-equilibrium) molecules and the second one is a larger

dataset of 207,685 slightly distorted molecules. The last subset is of equilibrium molecules

and has a size of 41,537. On each of these datasets, separate computations were done using

third-order density functional tight-binding (DFTB3) method supplemented with a many-body

dispersion (MBD) interaction, and eleven electronic properties were stored to form the electronic

descriptors in a later step. DFTB+ package [34] was used for the calculation of the DFTB

properties.

Extensive properties are strongly correlated with the system size compared to intensive properties,

and therefore easier to learn by using only a geometric descriptor. For instance, atomization

energy EAT being an extensive property is more likely to be predicted better by geometric

descriptors than electronic descriptors. These properties are also less impacted by the structural

distortion of the molecular conformation. The distortion of the bonds adds tension to the

molecules and therefore makes them easier to break, which results in a lower atomisation energy.

The difference in atomization energy for two conformations of C4NH7 is shown in the Figure

3.1. On the other hand, intensive properties such as Egap do not depend on the system size, but

strongly correlate with the atomic constituents, and molecular conformation. As seen in Figure

3.1, there is a 54% reduction in the value of Egap from the equilibrium conformation (Figure

3.1(b)) to the distorted one (3.1(a)).

24



Results and Discussions 25

Figure 3.1: EAT and EGAP for equilibrium and distorted conformation of C4NH7. The light
blue balls denote carbon atoms, dark blue ball is Nitrogen atom, and white balls are hydrogen

atoms.

The 3D structure of molecules were extracted from QM7-X dataset and saved in ‘xyz’ file format.

The graphical 3D geometries were generated using Visual Molecular Dynamics(VMD) software

[46].

3.2 Neural Networks Implementation

The neural network architectures were developed using Keras [47] library in python. The

computations for various geometric descriptors was done using QML code [48]. The Coulomb

Matrix generated was flattened from the square symmetric representation, to a 1D numpy array

[49] containing only the lower triangle of the matrix. This reduced the size of the input and

accelerated the calculations. For all the neural networks, Adam optimizer [50] was used with

learning rate varying from 10−4 to 10−6. Mean Absolute Error (MAE) was used as a metric for

training, and all the weights and biases were initialized with HeNormal initializers [51]. Various

activation functions like tanh, relu, and sigmoid were tested, and the best performance was

obtained in most architectures using ‘elu’ activation function [52].

The results of the neural network architectures were compared with that of kernel ridge regression,

which were obtained using the QML package. The σ and λ parameters in the kernel regression

were optimized using principal component analysis algorithm [53]. All results presented in this

project have been obtained using QML and a supercomputer located at the Technical University

of Dresden in Germany.



Results and Discussions 26

3.2.1 Neural Network Architectures

In this section, we will define the distinct neural network architectures developed in the project.

In each of the architectures mentioned, 3 types of geometric descriptors were used: Coulomb

Matrix (CM), Bag-of-Bonds (BoB), and SLATM. In the dataset, the largest molecule contains

23 atoms, consequently, for this dataset, the size of CM generated is 276, size of BOB is 528,

and size of SLATM is 17,895. Thus, the computational cost increases as we move from CM to

BOB or to SLATM. In order to ensure a representative sample for the training and test sets, a

random generator was used to supply non-repeating indices for molecules within the dataset,

with molecules from those indices being extracted to form the desired set. The data is split into

training, validation, and testing sets. As explained in the prevoius chapter, the training set is

used for the modification of weights and biases in the backpropagation process. The model is

validated on the validation set, based on which the learning rate is modified. We have used a

patience of 100 epochs, which means that if the model fails to show much improvement in the

validation loss over 100 epochs, the learning rate is reduced by a factor of 0.5. This process of

training and validation is repeated for 20,000 epochs, and then the model is finally tested on

the test set. To ensure the results are comparable, the validation and test set used for different

training set sizes were always the same - this was ensured by supplying the same number as a

seed to the random generator.

In the first architecture, a simple sequential neural network was trained. The network contained a

total of 3 hidden layers, and the number of neurons in each layer were tuned using Hyperparameter

tuning methods. The architecture is shown in the Figure 3.2. This simple dense NN architecture

used only geometric descriptors as input. In the Figure 3.2, the input layer shows size of 276, for

Coulomb Matrix. For BOB, it would be 528, and for SLATM, 17895. The activation function

used here was ELU (Exponential Linear Units). To avoid confusion, this architecture is referred

to as the Sequential Architecture 1.

The second architecture is similar to the first one, but instead of having only the geometric

representation in the input features, the geometric and electronic representations are concatenated

in the data pre-processing step and then provided as input. The hyperparameters for this

architecture are same as that of the previous one. Both of these architectures were used for

prediction of both atomization energy EAT and HOMO-LUMO gap Egap. This NN architecture

is referred to as the Sequential Architecture 2 in the next section. The second architecture was

also trained making use of data standardization of the DFTB properties in the pre-processing

step.

As a 3rd architecture, the geometric and electronic descriptors were trained separately for a

few layers, and then the layers were concatenated together and the training proceeded in a

sequential manner. The architecture is shown in Figure 3.3. The Figure here shows training



Results and Discussions 27

Input Layer

X1

X2

X3

X4

X5

X6

...

X276

Hidden Layer 1

H1

...

H256

Hidden Layer 2

T1

...

T64

Hidden Layer 3

G1

...

G256

Output Layer

Y1

Figure 3.2: The first neural network architecture making use of only the geometric descriptors

of the geometric and electronic descriptors separately for 3 and 1 hidden layers, respectively,

followed by a concatenation of the layers. After the concatenation, the network is trained for

another layer, followed by the output layer. As the size of the electronic descriptor is lower than

that of the geometric descriptors, the number of hidden layers before concatenation are lower

for the electronic descriptors, to avoid loss of data. This architecture is called as the Sequential

Architecture 3 in the next section.

Similar to the approach used with the three sequential networks, two Convolutional Neural

Network Architectures were developed. In the first CNN, the geometric and electronic descriptors

were concatenated and passed to the network. The number of channels used by the convolutional

layer were tuned using Random Search method. In the second CNN architecture, the geometric

and electronic descriptors were treated separately for a few layers, followed by their concatenation.

Due to the increased number of channels in the convolutional layer, the data propagated through

the network becomes 3-dimensional. Hence, for the concatenation operation to work, 2 of the 3

dimensions need to match for the 2 layers being concatenated. Hence, the kernel size had to be

chosen accordingly to allow the size of the layer outputs to match, as shown in the Figure 3.4b.

All the mentioned neural network models were trained on all the three datasets, i.e., strongly



Results and Discussions 28

Figure 3.3: The third neural network architecture training the geometric and electronic
descriptors separately followed by their concatenation.

distorted molecules, slightly distorted molecules and the equilibrium molecules. For the distorted

and equilibrium molecules, the training size is varied from 1k to 30k molecules, validation size is

taken as 2000 molecules, and test set is 10k molecules. However, the dataset of slightly distorted

molecules is a larger dataset containing 207,685 molecules, and for this, the training size was

varied from 1k to 50k, the validation size was of 5000, and the remaining molecules were used

for testing.

3.2.2 Comparison of the models

The usual way of tracking the performance of a NN model is through a learning curve. In a

learning curve, the error of the NN model is plotted with respect to the training set size, i.e.

with respect to the total number of molecules used for training the model. As we have seen,

if more data is available to a neural network, the model will be able to learn more about the

chemical space represented by the dataset, and the error is expected to be reduced. However,

we have seen that due to overfitting, or due to improperly tuned hyperparameters, the error



Results and Discussions 29

(a) CNN architecture using combined electronic and
geometric descriptors as input

(b) CNN architecture for handling the electronic
and geometric descriptors separately for a few layers

before their concatenation.

Figure 3.4: Convolutional Neural Network Architectures using the electronic and the geometric
descriptors. (A) shows the Electronic descriptors combined with the coulomb matrix representa-
tions making the input size of 316, while (B) shows the geometric and electronic descriptors

handled separately.

sometimes increases with the increasing training size. These learning curves will help us to

identify the performance and the errors of the models.

There are various metrics that can be used as error representation while plotting the learning

curve. More oftenly, mean absolute error (MAE) or mean squared error (MSE) are used as

metric for performance measurement. MAE can be defined as MAE = ( 1n)
∑n

i=1 |yi − xi|; where
yi and xi are the true and predicted values of the model, and ‘n’ is the total size. Notice that

using the plot of MAE vs training set size as the sole metric can sometimes be misleading while

comparing multiple NN models. In that case, we make a histogram of the difference between the

true and the predicted values for a particular training set size, to know the distribution of errors.

The performance of the models for different geometric descriptors has been analysed in this

section using learning curves and histograms. All this analyses are initially done for the strongly

distorted molecules, because the physicochemical properties of these molecular structures have



Results and Discussions 30

(a) Error Distribution (MAE) of the sequential neu-
ral network architectures, for the training size of 30k

molecules (b) Learning Curve for the sequential networks in loglog
scale.

Figure 3.5: Error distribution of Sequential Networks for prediction of Eat, using Coulomb
Matrix as the geometric descriptor on the dataset of strongly distorted molecules.

been shown to be a challenge for current ML methods. After this, the results are also verified on

the equilibrium dataset and the larger dataset of slightly distorted molecules.

For the sequential architecture 1 and 2 described in the previous section, the learning curve

and histogram of error distribution for EAT prediction are shown in the Figure 3.5. From the

learning curve in Figure 3.5b, we can see that for a small training size of 1k molecules, coulomb

matrix is able to predict atomization energy better than when using it along with electronic

descriptors. But for higher training set sizes, the sequential architecture 2, which makes use of

both the electronic and geometric descriptors, has performed better than the architecture 1. The

Figure 3.5a shows that error distribution is more 0-centred when data standardization is used

for the DFTB properties. The histogram also shows that the prediction error by architecture 2

for most of the molecules is close to 0, and mostly lies between -1 to +1 eV. Whereas, in the

case of architecture 1, there are more outliers, and the error distribution lies between -3 to +3

eV. This shows that neural network is able to extract almost 2-times more information about

the atomization energy when tight-binding properties are also considered. The increase in error

from training set size of 8000 to training size of 10,000 in Figure 3.5b denotes an error due to

overfitting.

A comparison of the errors obtained on the second sequential network using CM+DFTB with

data standardization is provided in the Figure 3.6. This allows us to visualise the distribution

of error, and we can observe that for a smalling training set size, the variance of error is

higher. Similar results were obtained in the prediction of HOMO-LUMO gap, which is shown

in the Figure 3.7. For further discussions, the DFTB properties are always standardized while

pre-processing before passing to the neural network.



Results and Discussions 31

(a) Error Distribution (MAE) for the second sequen-
tial network using CM+DFTB with standardization of

properties for 3 different training set sizes.

(b) Correlation plot for 3 different training set sizes for
the second sequential network

Figure 3.6: Error distribution and correlation plot of Sequential Networks for prediction of
Eat, using Coulomb Matrix + DFTB properties with data standardization on the dataset of

strongly distorted molecules.

(a) Error Distribution (MAE) of the sequential neu-
ral network architectures, for the training size of 30k

molecules for HOMO-LUMO gap

(b) Learning Curve for the sequential networks in loglog
scale.

Figure 3.7: Error distribution of Sequential Networks for prediction of Egap, using Coulomb
Matrix as the geometric descriptor on the dataset of strongly distorted molecules. DFTB

properties were standardized while preprocessing.

As discussed in the previous section, for an extensive property like EAT , geometric descriptors

are important for property prediction because they encode the structural information of the

molecules. When the models were trained for property prediction of EAT and Egap using only

the DFTB properties, without the geometric descriptors, the results are shown in the Figure

3.8. As expected, the DFTB properties are able to predict the HOMO-LUMO gap properly

without any geometric descriptor, with almost the same error as the sequential architecture 2.

However, for the prediction of atomization energy, using only DFTB properties fails to provide

good results and the overall error for training size of 30k is 0.586 eV, while the error with the

sequential architecture 2 is 0.357eV. This highlights the difference in approach needed for the

prediction of extensive and intensive properties.



Results and Discussions 32

(a) Learning curve for the prediction of atomization
energy (in loglog scale)

(b) Learning Curve for the prediction of HOMO-LUMO
gap (in loglog scale)

Figure 3.8: Error distribution of Sequential Networks for prediction of Egap, using Coulomb
Matrix as the geometric descriptor on the dataset of strongly distorted molecules. The DFTB

properties are standardized in both cases.

(a) Learning curve for the prediction of Atomization
energy gap using Bag-of-bonds (in loglog scale)

(b) Learning Curve for the prediction of HOMO-
LUMO gap using Bag-of-bonds (in loglog scale)

Figure 3.9: Learning Curve for the Sequential networks for predicting EGAP and EAT using
Bag-of-Bonds as the geometric descriptor.

(a) Histogram for prediction of atomization energy,
using SLATM.

(b) Scatter plot for comparison of models using
SLATM, with and without the use of DFTB prop-

erties.

Figure 3.10: Learning Curve for the Sequential networks for predicting EAT using SLATM as
the geometric descriptor.

While using the sequential architecture 3 as shown in Figure 3.3, the final error obtained on a

training set size of 30k molecules was 0.4132 eV, which is slightly more than 0.357 eV which was

obtained on sequential architecture 2.



Results and Discussions 33

Figure 3.11: Comparison of the 2 sequential NN architectures with the results obtained from
kernel ridge regression. All the learning curves make use of Coulomb Matrix as the geometric

descriptor.

The results for the predictions of Eat and Egap while using BOB, and SLATM as the geometric

descriptor are shown in the Figures 3.9 and 3.10, respectively. When comparing the results of

the sequential NN architectures with those corresponding to KRR method, we find the learning

curve as given in Figure 3.11. The kernel was computed using the same input vector as used by

the sequential architecture 2, i.e. by concatenating coulomb matrix and the set of 11 DFTB

properties together in a 1D vector. The σ and λ parameters for KRR were optimized using

PCA. As visible from the learning curve, the kernel method is able to outperform all the NN

models, and the learning curve follows a linear trend, showing the presence of overfitting in the

NN architectures.

3.2.2.1 SchNet Results

After the comparison of the deep learning models implemented, we compare our results with

a benchmark state-of-the-art SchNet implementation. As discussed in section 2.4, SchNet is a

continuous filter neural network implementation which makes use interaction blocks to compute

the atomic interactions in a molecule. The comparison of MAE of all the models is shown in the

Table 3.1 The overall comparison of the three geometric descriptors: CM, BOB, and SLATM for

prediction of atomization energy with the sequential architecture 2 is given in Figure 3.12 for

equilibrium molecules.



Results and Discussions 34

Prediction method MAE[EAT](eV)

KRR using CM and DFTB 0.211
Arch 1 using CM 0.7114
Arch 1 using BOB 0.642

Arch 1 using SLATM 0.4467
Arch 2 with CM 0.357
Arch 2 with BOB 0.302

Arch 2 with SLATM 0.0498
Arch 3 with CM 0.4132

SchNet with 3 interaction blocks 0.2657
SchNet with 1 interaction block 0.3046

Table 3.1: Mean Absolute Error for prediction of Atomization energy using the different Neural
Network approaches compared to state-of-the-art model of SchNet and Kernel Ridge Regression

methods for strongly distorted molecules.

Figure 3.12: Comparison of the 3 geometric descriptors for the prediction of atomization
energy with the 2nd Sequential architecture.

The learning curves for the comparison is given in Figure 3.13 Figure 3.13 shows that for the

prediction of atomization energy, SchNet outperforms the CM+DFTB approach with both

one and three interaction blocks. Whereas bag-of-bonds representation is able achieve results

comparable to SchNet with a single interaction block. This shows the importance of the

interaction blocks implemented in SchNet. These interaction blocks are able to capture the

geometric information about the molecules which is of crucial importance for the prediction of

extensive properties. On the other hand, for the prediction results of HOMO-LUMO gap, both

CM and BOB representations in combination with the electronic descriptors produced better

results than SchNet with 3 interaction blocks. These results again show that, for prediction of

intensive property like Egap, the electronic descriptors are sufficient and the interaction block

approach of SchNet is not needed.



Results and Discussions 35

(a) Comparison of the sequential architectures with
SchNet for Atomization Energy prediction

(b) Comparison of Sequential architectures with SchNet
for HOMO-LUMO gap prediction

Figure 3.13: Learning Curves for comparing the prediction results of deep learning models
developed with the results obtained from SchNet.

3.3 Feature Reduction

From the results discussed above, we have seen that addition of electronic descriptors allows

the neural network to better capture the intensive and extensive properties of the dataset. The

set of electronic properties used in training contains a total of 11 properties, of which 2 are

multidimensional, which produce a total size of 40 components for the electronic descriptors.

The geometric descriptors, on the other hand, have higher dimensionality (276 for CM, 528 for

BOB, and 17895 for SLATM). So, electronic descriptor space of size 40 is able to reduce the

testing error by a factor of 0.5 in comparison to high-dimensional geometric descriptors.

For efficient training of any NN model, it is important to keep the most relevant features in

the input and discard the irrelevant ones, as they will not only slow down the computation,

but will increase the training and testing error by moving the model away from the minima.

Any machine learning model will use information from irrelevant variables for new data, leading

to poor generalization [54]. So far, all the 11 DFTB properties were used for training, and

to improve the performance, the most relevant properties will be chosen. Initially, a low-level

feature correlation within the properties was computed. A heatmap of feature correlation is

shown in the Figure 3.14, where the last row represents the target property, which is atomization

energy for this case. This Figure is the graphical representation of correlation matrix computed

in python. We can observe that there is a strong negative correlation of atomization energy

with properties like Repulsive Energy and Many-Body dispersion energy. “Good features” are

defined as those which have high correlation with the target variable, yet low-correlation with

each other. This is because of the idea, that if two variables have strong correlation with each

other, then they would essentially provide similar information to the model, and having both of

them would be redundant.

To get a deeper idea about the correlation, we compute the correlation score of features using

ANOVA (ANalysis Of VAriance) F-test [55] values. The formula for the F-test statistic is given



Results and Discussions 36

Figure 3.14: Heatmap for correlation of various semi-empirical properties with each other, and
with the target property, i.e. Atomization Energy.

as

F =
ExplainedV ariance

UnexplainedV ariance

ExplainedV ariance =

K∑
i=1

ni(Ȳi − Ȳ )2/(K − 1)

Here, Ȳi is the sample mean for the ith feature, ni is the number of observations in the ith feature.

Ȳ is the overall mean of the data, K is the total number of features.

UnexplainedV ariance =
K∑
i=1

ni∑
j=1

(Yij − Ȳi)
2/(N −K)

Yij is the jth observation of the ith group out of the K groups, and N is the overall sample size.

Using the F-value as a function to find the best features correlated with the Atomization energy

using python library sklearn [56], we found the following scores given to each feature, which is

given in the Table 3.2.

This analysis provides the least score to Dipole Moment, and Fermi Energy, and the maximum

score to many-body dispersion energy. The techniques for feature reduction discussed above



Results and Discussions 37

Property Feature Score

Fermi Energy 1.728
Band Energy 2.039

Number of Electrons 3.92
0th order Energy 2.353

Second order energy 2.37
3rd order 2.002

Repulsive Energy 4.796
Many-body Dispersion Energy 8.813
Tight-binding Dipole Moment 1.561

Table 3.2: Feature Scores given to different electronic properties based on the f-value classifier.

use ranking of features based on correlation with the target property. The methods using such

techniques are called filter methods. These methods are simple to use, and do not require much

computational resources. These methods work as good low-level feature detection algorithms,

using which we can discard the features with really low scores.

Apart from filter methods, another set of methods used fore feature reduction are called wrapper

methods. These methods use a predictor as a black box and the predictor performance is used to

evaluate the features. An example of this approach is Recursive Feature Elimination (RFE). In

this technique, recursively features are eliminated, and based on reduced input space, neural

network models are trained and the testing error is checked.

For some preliminary results, RFE was used with keras neural network model as a black box

predictor, using only 4000 molecules and training them for only 4000 epochs. When this RFE

method was run on the dataset of distorted molecules, the results were removal of only 1 property,

that is the dipole moment. These results are coherent with the results obtained from the filter

methods, but an accurate feature selection will require a better predictor, trained for more

number of epochs than the current one.



Chapter 4

Summary and Outlook

4.1 Synopsis

In the present master thesis, we have generated efficient molecular representations by combining

geometric and electronic descriptors to predict extensive/intensive physicochemical properties

of small organic molecules. The focus here was to use low-cost geometric descriptors and to

improve the accuracy in property prediction by adding a set of electronic properties obtained

from a well-established semi-empirical method such as density functional tight-binding (DFTB).

The Coulomb Matrix, Bag-of-Bonds, and SLATM geometric descriptors have been used along

with DFTB electronic properties to predict PBE0 atomization energy and HOMO-LUMO gap of

small molecules considered in QM7-X dataset. In order to test the molecular representations and

get good property prediction accuracy, multiple neural network architectures were generated and

trained. Due to the availability of large amount of training data in recent chemical databases, it

was possible to train efficient neural network architectures on varying training sizes. The training

and testing were done on three subsets of the QM7-X dataset, including strongly distorted,

slightly distorted, and equilibrium molecular structures. Initially, all the analyses were done

on the subset of strongly distorted molecules, and then the results were compared with the

other subsets. When comparing the molecular representations, it was observed that for the

intensive properties like HOMO-LUMO gap, electronic properties were able to achieve better

prediction results as compared to the geometric descriptors. Whereas for the extensive properties,

the addition of electronic and geometric descriptors was able to reduce the prediction error as

compared to the use of only the geometric descriptors. The best results were obtained using

the SLATM geometric descriptor, which is the most costly of the three descriptors used. On

comparing geometric descriptors with smaller dimension (Coulomb Matrix, and Bag-of-Bonds),

it was observed that BoB provided much better results with only slightly more increase in the

training time.

38



Summary and Outlook 39

These results for extensive properties were not able to outperform state-of-the-art methods like

SchNet and Kernel Ridge Regression, whereas for the intensive property HOMO-LUMO gap,

using only the DFTB properties provided better results than SchNet with three interaction

blocks. The learning curve for KRR was linear, as compared to the results from the neural

networks indicating the presence of overfitting in the NN architectures, because of the inefficiency

in the hyperparameters. The effects of outliers proved to be quite small for HOMO-LUMO

gap, as compared to the extensive property atomization energy. In order to improve the

hyperparameters, hyperparameter tuning was done to know the efficient number of neurons,

activation functions, and the batch sizes using keras-tuner [57], and talos [58]. It was observed

that smaller architectures with lower number of neurons were able to provide good results

compared to bigger architectures. This observation is explained by an interpretation of the

Occam’s razor, which states that given all other things being equal, the best accuracy will

be achieved by a model with the lowest trainable parameters. In other words, if a model’s

complexity is increased beyond need, the performance will decrease.

Different feature selection techniques were used to identify the most relevant electronic properties

suitable for the task at hand. First, filter methods were used to get a low-level understanding

and analysis of the properties being used, then some preliminary results were obtained by using

wrapper methods like recursive feature elimination. The aim of this technique was to remove the

dependent variables and thereby reducing the amount of input data, leading to an improvement

in the performance of the model.

4.2 Perspective and future work

A major limitation in the current work is the existence of overfitting in the neural network models

reported, which acts as a barrier to efficient neural network training. Practical feature reduction

techniques need to be implemented, obtaining the best molecular representation required for

prediction of atomization energy and HOMO-LUMO gap. Using the effective representation, a

more exhaustive hyperparameter tuning can be done, on not just the number of neurons, but

also the batch-sizes and activation functions.

Moreover, as a part of future work, we propose the analysis of local and global electronic

descriptors, and splitting them separately for training of the neural networks. Another possible

aspect is the use of neural network geometric representations together with electronic properties

to develop machine learning force fields. This can also make use of better loss functions involving

both energy and forces similar to the one shown by [44].

As we have seen, the output of machine learning models depend a lot on the input data. In this

project only small organic molecules were considered (up to 23 atoms), however, it is important



Summary and Outlook 40

to be able to handle larger molecular systems for many real-life applications. Availability of

better data is a crucial aspect for improving the scalability of machine learning models for

molecular property prediction.



Bibliography

(1) Keith, J. A.; Vassilev-Galindo, V.; Cheng, B.; Chmiela, S.; Gastegger, M.; Müller, K.-R.;

Tkatchenko, A. Chemical Reviews 2021, 121, 9816–9872.

(2) Von Lilienfeld, O. A.; Burke, K. Nature Communications 2020, 11, 4895.

(3) Tkatchenko, A. Nature Communications 2020, 11, 4125.

(4) Von Lilienfeld, O. A.; Burke, K. Nature Communications 2020.

(5) Vamathevan, J.; Clark, D.; Czodrowski, P.; Dunham, I.; Ferran, E.; Lee, G.; Li, B.;

Madabhushi, A.; Shah, P.; Spitzer, M.; Zhao, S. 2019.

(6) Unke, O. T.; Chmiela, S.; Sauceda, H. E.; Gastegger, M.; Poltavsky, I.; Schütt, K. T.;

Tkatchenko, A.; Müller, K.-R. ACS Publications 2021.

(7) Chmiela, S.; Sauceda, H. E.; Müller, K.-R.; Tkatchenko, A. Nature Communications 2018,

9, 3887.

(8) Chmiela, S.; Sauceda, H. E.; Poltavsky, I.; Müller, K.-R.; Tkatchenko, A. Computer Physics

Communications 2019, 240, 38–45.

(9) Ramakrishnan, R.; Dral, P. O.; Rupp, M.; von Lilienfeld, O. A. Scientific Data 2014, 1,

140022.

(10) Smith, J. S.; Isayev, O.; Roitberg, A. E. Scientific Data 2017, 4, 170193.

(11) Hoja, J.; Medrano Sandonas, L.; Ernst, B. G.; Vazquez-Mayagoitia, A.; DiStasio Jr., R. A.;

Tkatchenko, A. Scientific Data 2021, 8, 43.

(12) Montavon, G.; Rupp, M.; Gobre, V.; Vazquez-Mayagoitia, A.; Hansen, K.; Tkatchenko, A.;

MÃ¼ller, K.-R.; von Lilienfeld, O. A. New Journal of Physics 2013, 15, 095003.

(13) Hansen, K.; Montavon, G.; Biegler, F.; Fazli, S.; Rupp, M.; Scheffler, M.; von Lilienfeld,

O. A.; Tkatchenko, A.; Müller, K.-R. Journal of Chemical Theory and Computation 2013,

9, 3404–3419.

(14) Rupp, M.; Tkatchenko, A.; Müller, K.-R.; von Lilienfeld, O. A. Phys. Rev. Lett. 2012,

108, 058301.

41



Bibliography 42

(15) Blum, L. C.; Reymond, J.-L. Journal of the American Chemical Society 2009, 131, 8732–

8733.

(16) Ramakrishnan, R.; Hartmann, M.; Tapavicza, E.; von Lilienfeld, O. A. Journal of Chemical

Physics 2015, 143, 84111–84111.

(17) Ruddigkeit, L.; van Deursen, R.; Blum, L. C.; Reymond, J.-L. Journal of Chemical

Information and Modeling 2012, 52, 2864–2875.

(18) Ramakrishnan, R.; Dral, P. O.; Rupp, M.; von Lilienfeld, O. A. Scientific Data 2014, 1.

(19) Schneider, G. Nature Reviews Drug Discovery 2010, 9, 273–276.

(20) Todeschini, R.; Consonni, V., Handbook of molecular descriptors; Todeschini, R, Consonni,

V., Eds.; Methods and Principles in Medicinal Chemistry; Wiley-VCH Verlag: Weinheim,

Germany, 2000.

(21) Weininger, D. Journal of Chemical Information and Computer Sciences 1988, 28, 31–36.

(22) Hansen, K.; Biegler, F.; Ramakrishnan, R.; Pronobis, W.; von Lilienfeld, O. A.; Müller,

K.-R.; Tkatchenko, A. The Journal of Physical Chemistry Letters 2015, 6, 2326–2331.

(23) Huang, B.; von Lilienfeld, O. A. Nature Chemistry 2020, 12, 945–951.

(24) Puleva, M. Reliability of Machine Learning Models for Molecular Property Prediction,

MA thesis, University of Luxembourg, 2021.

(25) Pronobis, W.; Schütt, K. T.; Tkatchenko, A.; Müller, K.-R. The European Physical Journal

B 2018, 91, 178.

(26) Porezag, D.; Frauenheim, T.; Köhler, T.; Seifert, G.; Kaschner, R. Physical Review B

1995, 51, 12947–12957.

(27) Hohenberg, P.; Kohn, W. Physical Review 1964, 136, B864–B871.

(28) Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, A1133–A1138.

(29) Spiegelman, F.; Tarrat, N.; Cuny, J.; Dontot, L.; Posenitskiy, E.; MartÃ, C.; Simon, A.;

Rapacioli, M. Advances in Physics: X 2020, 5, PMID: 33154977, 1710252.

(30) Koskinen, P.; MÃ¤kinen, V. Computational Materials Science 2009, 47, 237–253.

(31) Fonseca Guerra, C.; Snijders, J. G.; te Velde, G.; Baerends, E. J. Theoretical Chemistry

Accounts 1998, 99, 391–403.

(32) Frisch, M. J. et al. Gaussian09 Revision E.01, Gaussian Inc. Wallingford CT 2009.

(33) Calaminici, P.; Janetzko, F.; Köster, A. M.; Mejia-Olvera, R.; Zuniga-Gutierrez, B. Journal

of Chemical Physics 2007, 126, 44108–44108.

(34) Hourahine, B. et al. The Journal of Chemical Physics 2020, 152, 124101.

(35) Gaus, M.; Lu, X.; Elstner, M.; Cui, Q. Journal of Chemical Theory and Computation

2014, 10, 1518–1537.



Bibliography 43

(36) Gallarati, S.; Fabregat, R.; Laplaza, R.; Bhattacharjee, S.; Wodrich, M. D.; Corminboeuf,

C. Chemical Science 2021, 12, 6879–6889.

(37) Axilrod, B. M.; Teller, E. Journal of Chemical Physics 1943, 11, 299–300.

(38) Jordan, J. Setting the learning rate of your neural network. 2020.

(39) Commons, W. K-fold cross validation EN https://commons.wikimedia.org/w/index.

php?curid=82298768.

(40) Hinton, G. E.; Srivastava, N.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. CoRR

2012, abs/1207.0580.

(41) LeCun, Y.; Boser, B.; Denker, J. S.; Henderson, D.; Howard, R. E.; Hubbard, W.; Jackel,

L. D. Neural Computation 1989, 1, 541–551.

(42) Goodfellow, I.; Bengio, Y.; Courville, A., Deep Learning, http://www.deeplearningbook.

org; MIT Press: 2016.

(43) Schütt, K. T.; Kessel, P.; Gastegger, M.; Nicoli, K. A.; Tkatchenko, A.; Müller, K.-R.

Journal of Chemical Theory and Computation 2019, 15, 448–455.

(44) Schütt, K. T.; Kindermans, P.-J.; Sauceda, H. E.; Chmiela, S.; Tkatchenko, A.; Müller,

K.-R. SchNet: A continuous-filter convolutional neural network for modeling quantum

interactions, 2017.

(45) Schütt, K. T.; Arbabzadah, F.; Chmiela, S.; Müller, K. R.; Tkatchenko, A. Nature

Communications 2017, 8, DOI: 10.1038/ncomms13890.

(46) Humphrey, W.; Dalke, A.; Schulten, K. Journal of Molecular Graphics 1996, 14, 33–38.

(47) Chollet, F. et al. Keras, https://keras.io, 2015.

(48) Christensen, A.; Faber, F.; Huang, B; Bratholm, L.; Tkatchenko, A; Muller, K.; von

Lilienfeld, O. QML: A Python Toolkit for Quantum Machine Learning.

(49) Harris, C. R. et al. Nature 2020, 585, 357–362.

(50) Kingma, D. P.; Ba, J. Adam: AMethod for Stochastic Optimization, cite arxiv:1412.6980Comment:

Published as a conference paper at the 3rd International Conference for Learning Repre-

sentations, San Diego, 2015, 2014.

(51) He, K.; Zhang, X.; Ren, S.; Sun, J. In 2015 IEEE International Conference on Computer

Vision (ICCV), 2015, pp 1026–1034.

(52) Clevert, D.-A.; Unterthiner, T.; Hochreiter, S. arXiv preprint arXiv:1511.07289 2015.

(53) Vidal, R.; Ma, Y.; Sastry, S. S. 2016, 25–62.

(54) Chandrashekar, G.; Sahin, F. Computers Electrical Engineering 2014, 40, 40th-year

commemorative issue, 16–28.

(55) Lomax, R. G., An Introduction to Statistical Concepts, 2nd ed.; Routledge Academic: New

York, NY, 2007.

https://commons.wikimedia.org/w/index.php?curid=82298768
https://commons.wikimedia.org/w/index.php?curid=82298768
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1038/ncomms13890
https://keras.io


Bibliography 44

(56) Pedregosa, F. et al. Journal of Machine Learning Research 2011, 12, 2825–2830.

(57) O’Malley, T.; Bursztein, E.; Long, J.; Chollet, F.; Jin, H.; Invernizzi, L., et al. KerasTuner,

https://github.com/keras-team/keras-tuner, 2019.

(58) Autonomio Talos [Computer software], 2020.

https://github.com/keras-team/keras-tuner

	Declaration of Authorship
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Background
	1.2 Objectives

	2 Fundamental Concepts
	2.1 Theoretical Background
	2.1.1 Density Functional Theory
	2.1.2 Density Functional Tight Binding
	2.1.3 Limitations

	2.2 Datasets
	2.2.1 Generation Procedure
	2.2.2 Properties

	2.3 Machine Learning
	2.3.1 Geometric Representations
	2.3.2 Neural Networks
	2.3.3 Convolutional Neural Networks

	2.4 SchNetPack

	3 Results and Discussions
	3.1 Molecular Property Space
	3.2 Neural Networks Implementation
	3.2.1 Neural Network Architectures
	3.2.2 Comparison of the models
	3.2.2.1 SchNet Results


	3.3 Feature Reduction

	4 Summary and Outlook
	4.1 Synopsis
	4.2 Perspective and future work

	Bibliography

